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electron transfer at large distances* 

J. N. Onuchic** and A. A. S. da Gama*** 

Division of Chemistry and Chemical Engineering****, California Institute of Technology, 
Pasadena, CA, 91125, USA 

(Received April 25, revised August 23/Accepted October 30, 1985) 

We consider the dependence of the exchange interaction in electron transfer 
processes on the intersite vibrational modes. We assume, in particular, that 
high-frequency intramolecular modes of proteins may play this role in biologi- 
cal processes. We compare our model with that for tunneling through a time 
dependent barrier and with other works which considered the dependence of 
the exchange interaction on the nuclear coordinates. 
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1. Introduction 

In this work we are concerned with electron transfer over large distances in 
biological systems, particularly proteins. In some circumstances, for example, 
when mixed valence or excited species are present electron transfer can take 
place between two localized electronic states [1, 2]. 

Electron localization or delocalization has been a subject of subtle interest in 
physics [3], chemistry [4] and biology [5] for many years. Mixed valence com- 
pounds, for example, have been classified [4] and experimentally identified [6] 
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as completely localized (or delocalized) and partially localized, where localization 
or delocalization depends on the electronic interaction between the two "local- 
ized" wave functions and on the magnitude of the vibronic coupling on each 
trapping site. The interesting regime to be explored is the one where localization 
can be characterized within the time scale of some experimental measurement, 
and the transfer rate between the two trapping sites can be measured. 

There are two proposed mechanisms for electron transfer. In one of them the 
transfer rate is a function of the small overlap of the two spatially localized wave 
functions (through space mechanism) [2]. In the other mechanism, bridging 
groups significantly enhance the effective overlap between the localized functions 
(through bond mechanism) [7]. At specially large distances, this second mechan- 
ism may assume special importance. Depending on the energy of the localized 
state relative to some "medium" extended states, and on the electronic hopping 
interaction between the bridging units, the "through bond" wave function decay 
with distance may be slower than the direct interaction. The role of this kind 
of essentially superexchange mechanism has been discussed in great detail in 
the recent literature [7-9]. The main aim of the present work is to discuss the 
possibility of the influence of the intersite "medium" modes on the electronic 
interaction, which can be "through space" or "through bond",  since, for the 
latter, an effective interaction, which replaces the direct interaction, may be 
defined [9]. 

Electron migration at large distances has been observed in biological systems. 
Particular interest has been devoted to the photosynthetic system [1, 2]. Heme 
proteins, and some other systems with well established molecular structure, have 
been used in recent intramolecular electron transfer experiments [10-12]. 

In large biological systems, like proteins with mixed valence sites, the polypeptide 
chain has been proposed to play the role of bridging group in a "through bond" 
mechanism. Since the protein chain can be modeled as a 1-D periodic structure, 
it has been treated by solid state techniques to investigate general feature of the 
system [13]. 

To advance a theoretical model for electron migration in this kind of system we 
should start with a simplified model. There are, actually, three main theories for 
thermal electron transfer processes [1, 2]: the classical Marcus' theory [14], the 
semi-classical model developed by Hopfield [15] and the quantum one, first 
formulated by Levich, Dogonadze and collaborators [16] and later by Jortner 
and collaborators [17]. The differences among them are basically in the way each 
one treats the "nuclear" coordinates. By nuclear coordinates we mean nuclear 
vibrations and librations, solvent motion and any other "slow" effect which may 
be coupled to the transfer process. A good discussion of the differences between 
the electron transfer theories was presented in a recent review by Marcus [18]. 

All these theories have a strong relationship with the theories of radiationless 
processes [19] and transport of small polarons [20]. The small polaron theory 
follows from the molecular crystal model, which assumes negligible overlap 
between neighboring sites. In this model, the electron-lattice interaction plays 
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the role of  trapping the electron by lowering the site energy when the electron 
is present. 

Biological systems are quite complex. The states of such systems must be described 
by statistical operators or density matrices. Due to the large number of degrees 
of freedom, a dynamical description of these systems using the above theories 
seems to be impossible. However many processes are associated with changes in 
a small number of degrees of freedom, weakly coupled to the others, in an 
essentially irreversible process [15, 17, 21, 22]. De Vault has called attention to 
the special role of vibronic coupling via high-frequency modes ( -4 0 0  cm -1) in 
biological electron transfer processes [2]. 

At large distances, the electron transfer process has been assumed in the conven- 
tional theories to be non-adiabatic and to respect the Franck-Condon principle. 
Because of  the latter the electronic exchange interaction is assumed to be impor- 
tant for only a single nuclear configuration. 

The applicability of the Born-Oppenheimer and Condon approximations to 
electron transfer at large distances has been questioned [23]. For very weak 
electronic exchange matrix elements ( - 1 0  -4 eV) the influence of nuclear coordin- 
ates on this interaction energy may be of some importance. In this work we 
consider the influence of the intersite and intrasite modes on these matrix elements. 
These two types of modes are considered separately, but the influence of them 
together is an important problem to be studied as an extension of the present 
model. 

2. Theoretical model 

In order to obtain a reasonable model for electron migration in molecules of 
biological interest we shall start with a simple model and later improve it. As we 
already discussed, an intramolecular electron transfer between two well localized 
states(sites) is considered. Because we are working in the Born-Oppenheimer 
approximation, and considering a one electron problem, the Hamiltonian depends 
only parametrically on the nuclear coordinates, i.e., 

he, = het(X ; X,, X2, Xb) (1) 

where x is the electronic coordinate and )(~, )(2 and Xb are the nuclear coordinates 
of the localized modes on site 1 and site 2, and the intersite modes, respectively. 

Each site is characterized by a one electron energy level plus all the localized 
vibrational modes. The one electron model is used because it has been shown to 
be adequate to describe the general features of the distant electron transfer 
problem, which is dependent on the long-range tail of  the wave function [24]. 
On site 1, for example 

H~.~I = el(X1)a~a, +2 hwi(b~bi + 1/2) (2) 
i 
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where at(a) and bt(b) are respectively fermion and boson creation (anihilation) 
operators. The one electron energy parameter is defined as 

= f ~*(x; 2~)h~.~(x;  X1) dx (3) El(X1) 

where the site energy el and the site localized wavefunctions are assumed 
dependent only on the localized site modes. 

Using the linear approximation for the expansion of e~(XT~) in the nuclear 
coordinates we obtain the "small polaron" term, i.e., 

el(Xi) = e, + • gihtoi(b~ + bi) (4) 
i 

and define the electron-vibration constant as usual [25] 

g, = (2/ Mihto~)1/2[Oel( R1)/OXi]lX ~ (5) 

where X ~ is the equilibrium displacement of  normal mode i without coupling. 
The "polaron" term changes the equilibrium position and energy of the site 
localized modes depending on whether or not the electron is on the site. 

To allow the transfer of the electron between the two centers we shall include 
an intersite exchange perturbation 

Hin t = V12(X1, X2, f~b)(a~a2Wa*2al) (6) 

where the two centers electronic integral is P 
Vl2(Xl' X2' X b )  = I ~2~(x; 22)hel~l(X; 21) dx. (7) 

Putting all of the above parts together, including the energy term of the intersite 
modes, we obtain 

H = ela~al+e2atga2 

+ Y, [htoi(b~bi+l/Z)+gihtoi(b~+bi)a~a~] 
i(sitel) 

+ Y, [ho)j(b~bj+l/2)+gjhtoi(b~+bj)a*2a2] 
j (site2) 

+ Y hwk(b*kbk+l/2)+ ~ V12(Xi, Xj, Xk)(a~a2+a*2aO. (8) 
k ( bridge ) i,j, k 

In this work we intend to discuss the dependence of V12 on the nuclear coordinates. 
It is important to mention that previous works, by Ratner [25] in particular, 
considered the dependence of V12 on the nuclear coordinates. We will compare 
our results with the previous ones. We are also going to discuss our model in 
light of a result obtained by Buttiker and Landauer [26] for tunneling through 
a time modulated barrier, i.e. 

V(x, t)= Vo(x)+ V,(x) cos tot. (9) 

In the next section we solve two simple cases of Eq. (8): V12 dependent only on 
one site localized mode, and Va2 dependent on one intersite mode. We will discuss 
how the dependence of V12 on the nuclear coordinate can be considered as a 
modulation of the zero order intersite exchange interaction and the different 
results when fast or slow intersite modes are coupled to the electron transfer. 
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3. A simple application 

As a first application we consider only one localized vibration, on one of the two 
sites, and we suppose this nuclear coordinate affects V12. This dependence of 1/1= 
on the localized nuclear coordinates has already been considered by Ratner [25] 
as Vie= V12(X1-X2), where X1 and 322 are the coordinates of  the localized 
vibrations at the center 1 and 2, respectively. 

The two site Hamiltonian with one localized mode on site 1 is 

H = e,a~al + e~at:a2+ ghw(b~+ bl)a~a, 

+hw(b~b, + 1 /2 )+  V12(X,)(a~a2 + at=a1). (10) 

A picture of  the two localized sites is shown in Fig. 1. 

Since we have only a linear correction from the "polaron"  coupling we can define 

hw(b~bl + 1/2) + ghw(b~ + hi) = hoJ(bt.b. + 1/2) + As (11) 

where bt.(b.) are the boson operators for the shifted oscillator, when the electron 
is on the donor,  and for reasons of convenience, we include As in s~. Then we 
can write the time dependent  eigenfunctions for each center as 

site l : l n  , 1) = (n!) -1/2 exp {-i[ea+(n+ 1/2)hoJ]t/h}bt.na~[O) 

site 2: I m, 2) = ( m !)-1/2 exp { - i [  e2 + ( m + 1/2) hw ] t~ h}b ~a~ [ 0} (12) 

where n and m represent the number of  vibrational quanta in the harmonic 
oscillator. 

By using time dependent  perturbation theory, and then Fermi's golden rule, we 
evaluate the transition rate from the initial thermally averaged states In, 1} to a 
manifold of  final states {Ira, 2)}. 

k -- (2~r/h) y~ p(n)l(rnlv,2(X,)ln)12a[(el + nho~) - (E2--}- mhw)] (13) 

where p(n) is the thermal density of  initial states. 

Fig. 1. A diagramatic representation of the two local- 
ized states 

I 2 2 

- 7 - _ _  

I I 

x:" xO 

X 1 - Is  the  m i n i m u m  energy  posi t~on 
w h e n  t h e  e l e t r o n  is ins i te  1 
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This result is equivalent to the one obtained by Ratner [25]�9 

It is useful to assume at this point that the localized modes do not influence the 
exchange interaction, i.e., X~ is treated in the Condon approximation�9 The 
dependence of 1/12 on one intersite nuclear coordinate (Xb) is now considered�9 
Assuming we have one localized mode X1 and one intersite mode Xb, V12 is 
expanded to first order in the intersite coordinate 

VI2(Xb) V~ V~;-b*v+ b+ = V12 bb (14) 

where we make a Condon approximation for the X1 coordinate�9 The difference 
between V~- and V~; is due to the dependence of the integral over the electronic 
coordinate (Eq. 7) on the nuclear configuration. 

Then, we obtain the following Hamiltonian: 

H = clara1 + s2a~a2+ gfi~o (b~ + bl)a~a, + h~o(b~b~ + 1/2) 

+hCob(b~bbb+l/2)+[vO2 + b- t b+ t t V12 bb + V12 bb](ala2+ a2al). (15) 

The time dependent eigenfunctions for the two states are: 

Inb, n, 1) = (nb!n!) -1/2 exp { - i [ e l + ( n +  1/2)hw 

+(nb + l/2)hCOb]t / *% t,  t h}bb b ,  al[0) 

]rob, m, 2) = (rob !m !)-1/2 exp { - i [  e2 + (m + 1/2)hw + (rob + 1/2) fiWb] t~ fi}. 

tm tm t 
�9 bb ~bl a2lO> (16) 

and the transition rate 

k = 2 z r / f i  ~ p(nb) ~ p(n)[V~ 2. 
nb,m b n,m 

�9 3[(el + nhoJ) - (e2+ mfiw)] + [[ V~f(m[n>(rndb*blnb>l 2 

+ I V~;(mln>(mblbblnb>12]. 

�9 ~ [ (E  1 -~- H~(.0) -- (E2~- m h o 3 )  ~- ~lOJb(tl b --  rob)]  (17)  

where p(nb) is the initial thermal density of states of the bridging modes�9 

Looking carefully at the result of the above equation we can think about this 
problem forgetting the bridging modes and considering a time dependent 
exchange interaction, i.e. 

V12 = V~ V~-2 exp (icobt) + V+2 exp (--icobt) (18) 

where + / -  is associated with absorption/emission of a vibrational quantum 
during the transition. We define 

V, + = V ~ - ~ b  and V~-2 = V~2~/n--~+l (19) 

where n-~= [ e x p ( h w b / k B T ) -  1] -1 is the average number of phonons in the har- 
monic oscillator. 
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The difference between V~-2 and V~2 is due to the dependence of the integral 
over the electronic coordinate on the nuclear configuration. In the classical limit 
fib >> 1 (kbT>> hWb), and without integrating over the electronic coordinate, the 
potentials in Eqs. (9) and (19) are equivalent. The relationship between the matrix 
elements of V~ and V~ can be used to get some insight about the interaction 
of the "traveling" electron and the intersite medium mode. 

The simplest model for electron transfer considers tunneling through a static 
barrier between two symmetric square wells separated by a distance R (symmetric 
because the energy for both sites is the same in the crossing point), as it is shown 
in Fig. 2. In our case instead of considering only a static barrier we include an 
oscillatory term (V1/2)(b*b+bb) for the coupling between the electronic and 
nuclear coordinate, i.e. a similar situation to the one considered by Buttiker and 
Landauer in [26]. Following Redi and Hopfield [27] we use the following wave 
functions for the barrier region between the two wells 

4fl = (2kZl ax2) '/2 exp [-X,(X + R/2)]  

~2 = (2k2/ag2) 1/2 exp [+X2(x- R/Z)] (20) 

where k 2 (Eo in Fig. 2) is the energy of the infinite square well in units of h2/2m, 
R is the separation between the wells, a is the size of the wells, and X~, X~ are 
the binding energies of sites 1 and 2 respectively. Assuming the deep well condition 
ax >> 1 (there is almost all particle density inside the well), for the static barrier 
(symmetric wells) the tunneling matrix element can be evaluated using Bardeen's 
transmission current [27]; 

V~ = (2h2k~/mxa) exp ( - x R )  (21) 

The tunneling matrix elements for the time dependent barrier can be obtained 
by changing the energy of one well by • (for example, in the Hamiltonian 
of Eq. (15), it is the donor energy), and using perturbation theory. The results 

E I 

E2 

~- o --. 

vT  -T 

V o 

I �84 

Eo 

i 

Electronic coordinate x 

( a )  

Fig. 2. a Two square wells model for electron transfer. 
b Tunneling through a square barrier 

reflection 

I*-R - , I  

---f-- 
JL 

( b )  

T 
V~ transmission 
I ~_ 
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obtained, shown in the next equation, can be related to the time independent 
matrix element by assuming htob << V, Eo (typical values for biological problems 
are of ht%--~400 cm -1 =0.05 eV and V - 2  eV [27]): 

Vlb2 = (~2(X2)1Vl/21 ~//1 (,1(1)) 

= (02(h2x2/2m)[ Va/2l~bl(h2x2/2m + hogb) 

• ( V1/2hWb)[1 - exp ( :~ mRt%/hx)] V~ (22) 

where mR/hx  = r is the traversal time defined by Buttiker and Landauer [26] 
and X= is equal to X in Eq. (21). 

The relation between rob and r -1 determines the influence of the barrier modulation. 
At low frequencies (OJb << r -I) the tunneling electron sees a static barrier. At high 
frequencies (~Ob >> r 1) the tunneling occurs through an averaged barrier of mean 
height Vo. It is important to recall that this is valid only for this specific electronic 
interaction and more generally we must recognize that V~ and V1~2 are dependent 
on the model assumed for this interaction. Furthermore, the source for the barrier 
oscillation in our model is the electron-phonon interaction, then V1~2 is propor- 
tional to the amplitude of vibration of the bridge coordinate, and the transmission 
coefficient for absorption or emission is temperature dependent. 
To obtain the final rate equation we have to use a distribution function for the 
intrasite mode and work out the sum over the Franck-Condon overlap integrals. 
From Eq. (17-19) we can write each contribution as 

- - 1 2  ~,, I(mln)12p(n) �9 ~[AEo,~ + ( n - m ) h w ]  (23) 
n , m  

where AEo = el - e2 and AE~ = AEo• htob. 

Following the conventional procedure we use the generating function method 
[19] and write Eq. (23) in the form 

f+_~ exp[- i (AEo,: t /h)+G+(t)+G_(t)]  (24) k = (I V~177 exp ( -Go)  dt 

where 

G+(t) = (A2/2)(fi + 1) exp (itot) 

G_(t) = (A2/2)fi exp (-kot) 

Go = G+(0) + G_(0) = (k2/e)(2fi + 1) 
r 

and A is the reduced displacement of the two site curves (X ~  XI*) at Fig. 1. 
The reorganization energy of the intrasite nuclear coordinates can be expressed 
in terms of a as Er = hto(k2/2). Go is often used as a parameter to quantify the 
magnitude of the vibronic coupling. Analytical expressions for k are in general 
obtained at the weak coupling limit (Go -< 1) or at the strong coupling limit 
(Go>> 1). From Jortner [17] we can obtain for the weak coupling limit (small 
reorganization energy, Er-< hto and/or  low-temperature kBT<< hto): 

k = (27r[ V~ + 1) p exp (-Go)[(A2/2)P/p !] (25) 
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where p=AEo,• is the reduced effective energy gap (assumed to be an 
integer). For p -> 2 the use of the Stirling approximation for p ! is quite good and 
k can be expressed as 

k--  (2~-I V~ exp ( -Go)  exp (-yp)/(2r '/2 (26) 

where y = In [p/(A2/2)(~ + 1 ) ] -  1, for y > 0 Eq. (26) expresses the energy gap 
law for radiationless processes. 

The strong coupling limit (large reorganization energy and high temperature) 
reproduces the well-known activated rate equation: 

k = (27i- I V~177 -1/2 exp ( -E~•  *) (27) 

where the effective temperature is defined by kBT* = (hco/2) coth (hw/2kBT) and 
0,• the activation energy is EA = (AEo,• E,)2/4E, This result can also be obtained 

by semiclassical approximation [15] and the classical expression [14] is repro- 
duced at sufficiently high temperatures (kBT >> hw) when kBT*= knT. 

4. Discussion 

In this model we consider the possible influence of intersite "medium" modes 
on the exchange interaction (transfer matrix) of electron transfer processes. 
High-frequency intramolecular modes of the protein may play a special role in 
this "phonon assisted" transfer matrix in biological systems, i.e., the electron 
may be interacting with the nuclear bridging modes "while travelling" between 
the two trapping sites. 

The coupling of the two sites to a common boson field is considered as a way 
to describe inelastic tunneling [28]. However, the time dependent transfer matrix 
leads to a different physical interpretation. The intrasite and the intersite modes 
play different roles in the process. In some ways this separation is similar to the 
one of promoting and accepting modes in the  theory of radiationless processes 
[29]. Indeed the intrasite modes are identified as the accepting modes. The main 
effect of the vibronic coupling is included on the unperturbed Hamiltonian to 
describe the initial and final states and the intrasite modes are the ones directly 
coupled to the donor and acceptor centers. The intersite modes may be less 
sensitive to the change of  charge on the two localized sites. However, in particular 
for electron transfer at large distances, the "electron traveling time" may be 
sufficiently long to make the electron-bridging modes interaction effective. To 
avoid higher orders of perturbation, the "promoting factor" is considered a 
one-phonon mechanism. The first consequence is that the conventional multi- 
phonon factor changes only by one order ( p + l - p h o n o n  process), and it is 
assigned to the intrasite modes. The second consequence is that "V12" is no 
longer a pure electronic factor, i.e. V1~2 are related to the vibronic coupling 
between the "traveling electron" and the bridging modes. The magnitude of the 
effect depends on V1, which is related to the intersite mode vibronic coupling, 
and on the relation between OJb and z -1 in Eq. (22). For typical values of barrier 
height, for example, 1.5 eV, at a distance of 13 A, and with hco b = 400 cm -~, if 
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Vt/2h~ob = 10, this effect is significantly large. However, much more experimental 
and theoretical work is necessary for a clearer interpretation of the mechanism 
of intersite mode vibronic coupling and, therefore, to obtain reasonable estimates 
for these parameters.  

The separation of nuclear vibrations in low- and high-frequency modes has often 
been used in the electron transfer theory ([17], for example). However, in this 
work only high-frequency modes are considered because for slow-modes the 
validity of  the non-adiabatic limit is questionable, and this is not a point we 
intend to discuss here. 

The contribution of the term corresponding to phonon emission (with VT: and 
AE_ in Eq. (23), in particular the effect of  spontaneous emission (h7 = 0 in Eq. 
(19)), can be important when we consider some electron transfer processes on 
the region of validity of the "energy gap law". These processes are predicted to 
occur when the electron transfer is associated with a small reorganization of the 
nuclear coordinates [30]. In this "weak coupling limit" the electron transfer rate 
can display weak temperature dependence, in particular for small energy gaps. 
Temperature dependence of radiationless transitions in this limit has been 
observed experimentally to be associated with the factor (fi + 1) p [31]. In biologi- 
cal electron transfer, weak coupling limits may be observed when the metal sites 
are buried inside the protein pocket, protected from interaction with a polar 
medium [30]. The reorganization of the first coordination shell, here associated 
with the intrasite mode, has been observed to be small for Run/m(bpy)3 and 
RuII//rI(NH3)6 [32]. Ru(NH3)5-histidine modified azurin, for example, was 
observed to have a weak temperature dependent  intramolecular electron transfer 
rate from -10~ to 60~ [11]. 

In Fig. 3, we show the dependence of the electron transfer rate on the energy 
gap for the terms in AEo and AE_ within the weak coupling limit. The two 
contributions have to be summed up and the absolute magnitudes will depend 

i0 8 

i 
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t ~ "  
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J I A A i Fig. 3. Dependence of k with the energy gap on 
0 4 8 p the weak coupling limit. T = 300~ 
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Fig. 4 Dependence of k with the temperature on the weak coupling limit. Plot for AE 0 and p = 5 

on the parameter  A = (27r1V~ which is different for each one. To illustrate 
the temperature dependence in this limit we also plot k(hw/A) versus T in Fig. 
4. In this calculations we use the same value of 400 cm -1 for the intrasite modes, 
which is in agreement with the mean frequency of metal-ligand bonds in some 
metalloproteins. The reorganization energy is assumed to be (Er/hw)= 0.75. 

On the strong coupling limit, the reorganization energy being much larger than 
hw, the difference in activation energy associated with AEo and AE_ may be very 
small. The interesting situation AEo = E ,  which has also been used as an explana- 
tion for temperature independent electron transfer rates [17], has an activation 
energy associated with AE_ which is E~ = hw/2A 2. If, for example, we assume 
Er = 3000 cm -z, we have E~ = 13.3 cm -1 which is too small to be characterized 
experimentally. 
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